Search results
Results from the WOW.Com Content Network
In some situations, overwriting circular buffer can be used, e.g. in multimedia. If the buffer is used as the bounded buffer in the producer–consumer problem then it is probably desired for the producer (e.g., an audio generator) to overwrite old data if the consumer (e.g., the sound card) is unable to momentarily
Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be predicted. [ 1 ] Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide ...
There is a close connection between machine learning and compression. A system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution). Conversely, an optimal compressor can be used for prediction (by finding the symbol that ...
However, increased buffering leads to large queuing delays and thus self-similarity significantly steepens the trade-off curve between throughput/ packet loss and delay. [17] ATM can be employed in telecommunications networks to overcome second-order performance measure problems.
An M/M/1 queueing node. In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation.
Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. . Typical effects include queueing delay, packet loss or the blocking of new connectio
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]
In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic).