Search results
Results from the WOW.Com Content Network
Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be predicted. [ 1 ] Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide ...
However, increased buffering leads to large queuing delays and thus self-similarity significantly steepens the trade-off curve between throughput/ packet loss and delay. [17] ATM can be employed in telecommunications networks to overcome second-order performance measure problems.
In some situations, overwriting circular buffer can be used, e.g. in multimedia. If the buffer is used as the bounded buffer in the producer–consumer problem then it is probably desired for the producer (e.g., an audio generator) to overwrite old data if the consumer (e.g., the sound card) is unable to momentarily
An M/M/1 queueing node. In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation.
In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic).
An M/M/∞ queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers currently being served. Since, the number of servers in parallel is infinite, there is no queue and the number of customers in the systems coincides with the number of customers being served at any moment.
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]
In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ: