Search results
Results from the WOW.Com Content Network
This is known as triple product expansion, or Lagrange's formula, [2] [3] although the latter name is also used for several other formulas. Its right hand side can be remembered by using the mnemonic "ACB − ABC", provided one keeps in mind which vectors are dotted together. A proof is provided below.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...
F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area . Here t ^ {\displaystyle \mathbf {\hat {t}} \,\!} is a unit vector in the direction of the flow/current/flux.
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Comparing this formula with that used to compute the volume of a parallelepiped, we conclude that the volume of a tetrahedron is equal to 1 / 6 of the volume of any parallelepiped that shares three converging edges with it. The absolute value of the scalar triple product can be represented as the following absolute values of determinants: