enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Iterated_logarithm

    In computer science, lg * is often used to indicate the binary iterated logarithm, which iterates the binary logarithm (with base ) instead of the natural logarithm (with base e). Mathematically, the iterated logarithm is well defined for any base greater than e 1 / e ≈ 1.444667 {\displaystyle e^{1/e}\approx 1.444667} , not only for base 2 ...

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  4. PyCharm - Wikipedia

    en.wikipedia.org/wiki/PyCharm

    PyCharm is an integrated development environment (IDE) used for programming in Python.It provides code analysis, a graphical debugger, an integrated unit tester, integration with version control systems, and supports web development with Django.

  5. SlickEdit - Wikipedia

    en.wikipedia.org/wiki/SlickEdit

    SlickEdit, previously known as Visual SlickEdit, [1] is a cross-platform commercial source code editor, text editor, and Integrated Development Environment developed by SlickEdit, Inc. SlickEdit has integrated debuggers for GNU C/C++, Java, WinDbg, Clang C/C++ LLDB, Groovy, Google Go, Python, Perl, Ruby, Scala, PHP, Xcode, and Android JVM/NDK.

  6. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  7. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    In computational number theory, the index calculus algorithm is a probabilistic algorithm for computing discrete logarithms.Dedicated to the discrete logarithm in (/) where is a prime, index calculus leads to a family of algorithms adapted to finite fields and to some families of elliptic curves.

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  9. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    An easy way to calculate log 2 n on calculators that do not have a log 2 function is to use the natural logarithm (ln) or the common logarithm (log or log 10) functions, which are found on most scientific calculators. To change the logarithm base from e or 10 to 2 one can use the formulae: [50] [53]