Search results
Results from the WOW.Com Content Network
For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water. Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n ...
For instance, a 20% saline (sodium chloride) solution has viscosity over 1.5 times that of pure water, whereas a 20% potassium iodide solution has viscosity about 0.91 times that of pure water. An idealized model of dilute electrolytic solutions leads to the following prediction for the viscosity μ s {\displaystyle \mu _{s}} of a solution: [ 57 ]
is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle (newtons, kg m s −2); μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters);
A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise is cP. The abbreviations cps, cp, and cPs are sometimes seen. Liquid water has a viscosity of 0.00890 P at 25 °C at a pressure of 1 atmosphere (0.00890 P = 0.890 cP = 0.890 mPa⋅s).
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The poiseuille (symbol Pl) has been proposed as a derived SI unit of dynamic viscosity, [1] named after the French physicist Jean Léonard Marie Poiseuille (1797–1869).. In practice the unit has never been widely accepted and most international standards bodies do not include the poiseuille in their list of units.
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.