Search results
Results from the WOW.Com Content Network
An example of such an enantiomer is the sedative thalidomide, which was sold in a number of countries around the world from 1957 until 1961. It was withdrawn from the market when it was found to cause birth defects. One enantiomer caused the desirable sedative effects, while the other, unavoidably [23] present in equal quantities, caused birth ...
Examples of absolute configuration of some carbohydrates and amino acids according to Fischer projection (D/L system) and Cahn–Ingold–Prelog priority rules (R/S system) The R/S system is an important nomenclature system for denoting enantiomers.
An enantiopure drug is a pharmaceutical that is available in one specific enantiomeric form. Most biological molecules (proteins, sugars, etc.) are present in only one of many chiral forms, so different enantiomers of a chiral drug molecule bind differently (or not at all) to target receptors.
They can reside in the pharmacologically active enantiomer (eutomer) or in the inactive one (distomer). [41] [42] [43] The toxicologic differences between enantiomers of have also been demonstrated. The following are examples of some of the chiral drugs where their toxic/undesirable side-effects dwell almost in the distomer.
Enantiomers can be separated by chiral resolution. This often involves forming crystals of a salt composed of one of the enantiomers and an acid or base from the so-called chiral pool of naturally occurring chiral compounds, such as malic acid or the amine brucine. Some racemic mixtures spontaneously crystallize into right-handed and left ...
Pure enantiomers also exhibit the phenomenon of optical activity and can be separated only with the use of a chiral agent. In nature, only one enantiomer of most chiral biological compounds, such as amino acids (except glycine, which is achiral), is present.
L- and D-amino acids are usually enantiomers. The exceptions are two amino acids with two stereogenic centers, threonine and isoleucine. Aside from those two special cases, L- and D-amino acids have identical properties (color, solubility, melting point) under many conditions. In the biological context however, which is chiral, these ...
As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l -Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory. l -Glucose is indistinguishable in taste from d -glucose, [ 1 ] but cannot be used by living organisms as a source of energy because it cannot be phosphorylated by ...