enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Instrumental variables estimation - Wikipedia

    en.wikipedia.org/wiki/Instrumental_variables...

    In the first stage, each explanatory variable that is an endogenous covariate in the equation of interest is regressed on all of the exogenous variables in the model, including both exogenous covariates in the equation of interest and the excluded instruments. The predicted values from these regressions are obtained:

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  4. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the explanatory variables are used as regressors. One typically uses only a subset of all the principal components for regression, making PCR a kind of regularized procedure and also a type of shrinkage estimator.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. [2]

  6. Explained variation - Wikipedia

    en.wikipedia.org/wiki/Explained_variation

    Assume a two-dimensional random variable = (,) where X shall be considered as an explanatory variable, and Y as a dependent variable. Models of family 1 "explain" Y in terms of X, (;), whereas in family 0, X and Y are assumed to be independent.

  7. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    Discrete variables referring to more than two possible choices are typically coded using dummy variables (or indicator variables), i.e. separate explanatory variables taking the value 0 or 1 are created for each possible value of the discrete variable, with a 1 meaning "variable does have the given value" and a 0 meaning "variable does not have ...

  8. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...

  9. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    In statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for ...