Search results
Results from the WOW.Com Content Network
The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z.
rfind(string,substring) returns integer Description Returns the position of the start of the last occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instr
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
The longest repeated substring problem for a string of length can be solved in () time using both the suffix array and the LCP array. It is sufficient to perform a linear scan through the LCP array in order to find its maximum value v m a x {\displaystyle v_{max}} and the corresponding index i {\displaystyle i} where v m a x {\displaystyle v ...
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Its length is n. P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
For example, the longest palindromic substring of "bananas" is "anana". The longest palindromic substring is not guaranteed to be unique; for example, in the string "abracadabra", there is no palindromic substring with length greater than three, but there are two palindromic substrings with length three, namely, "aca" and "ada".
After computing E(i, j) for all i and j, we can easily find a solution to the original problem: it is the substring for which E(m, j) is minimal (m being the length of the pattern P.) Computing E ( m , j ) is very similar to computing the edit distance between two strings.