Search results
Results from the WOW.Com Content Network
The probability mass function of a discrete random variable is the density with respect to the counting measure over the sample space (usually the set of integers, or some subset thereof). It is not possible to define a density with reference to an arbitrary measure (e.g. one can not choose the counting measure as a reference for a continuous ...
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
The pmf allows the computation of probabilities of events such as (>) = / + / + / = /, and all other probabilities in the distribution. Figure 4: The probability mass function of a discrete probability distribution. The probabilities of the singletons {1}, {3}, and {7} are respectively 0.2, 0.5, 0.3. A set not containing any of these points has ...
It is equivalent to, and sometimes called, the z-transform of the probability mass function. Other generating functions of random variables include the moment-generating function, the characteristic function and the cumulant generating function.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In probability and statistics, the Yule–Simon distribution is a discrete probability distribution named after Udny Yule and Herbert A. Simon. Simon originally called it the Yule distribution. [1] The probability mass function (pmf) of the Yule–Simon (ρ) distribution is
In equations, the PDF is specified as f T. If time can only take discrete values (such as 1 day, 2 days, and so on), the distribution of failure times is called the probability mass function. Most survival analysis methods assume that time can take any positive value, and f T is the PDF.