Ads
related to: examples of decimal expansion problems pdfteacherspayteachers.com has been visited by 100K+ users in the past month
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Worksheets
Search results
Results from the WOW.Com Content Network
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...
In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that
Moreover, in the standard decimal representation of , an infinite sequence of trailing 0's appearing after the decimal point is omitted, along with the decimal point itself if is an integer. Certain procedures for constructing the decimal expansion of x {\displaystyle x} will avoid the problem of trailing 9's.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to ...
A real number is computable if its digit sequence can be produced by some algorithm or Turing machine. The algorithm takes an integer as input and produces the -th digit of the real number's decimal expansion as output. (The decimal expansion of a only refers to the digits following the decimal point.)
In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.
The value of n is then the period of the decimal expansion of 1/p. [10] At present, more than fifty decimal unique primes or probable primes are known. However, there are only twenty-three unique primes below 10 100. The decimal unique primes are 3, 11, 37, 101, 9091, 9901, 333667, 909091, ... (sequence A040017 in the OEIS).
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Ads
related to: examples of decimal expansion problems pdfteacherspayteachers.com has been visited by 100K+ users in the past month