Search results
Results from the WOW.Com Content Network
The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand (see ellipse).
Use one of the fundamental rotation matrices to rotate the point depending on the coordinate axis with which the rotation axis is aligned. Reverse rotate the axis-point pair such that it attains the final configuration as that was in step 2 (Undoing step 2) Reverse rotate the axis-point pair which was done in step 1 (undoing step 1)
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
The complete "rotation" of the caliper around the polygon detects all antipodal pairs; the set of all pairs, viewed as a graph, forms a thrackle. The method of rotating calipers can be interpreted as the projective dual of a sweep line algorithm in which the sweep is across slopes of lines rather than across x - or y -coordinates of points.
In the 2-dimensional case, if the density exists, each iso-density locus (the set of x 1,x 2 pairs all giving a particular value of ()) is an ellipse or a union of ellipses (hence the name elliptical distribution).
Any fixed polarization can be described in terms of the shape and orientation of the polarization ellipse, which is defined by two parameters: axial ratio AR and tilt angle . The axial ratio is the ratio of the lengths of the major and minor axes of the ellipse, and is always greater than or equal to one.
A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix: