Search results
Results from the WOW.Com Content Network
Pyridine-N-oxide is the heterocyclic compound with the formula C 5 H 5 NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis. [1]
Pyridine-N-oxides bind to metals through the oxygen. According to X-ray crystallography, the M-O-N angle is approximately 130° in many of these complexes. As reflected by the pKa of 0.79 for C 5 H 5 NOH +, pyridine N-oxides are weakly basic ligands. Their complexes are generally high spin, hence they are kinetically labile.
[106] [107] One example is the sulfur trioxide pyridine complex (melting point 175 °C), which is a sulfation agent used to convert alcohols to sulfate esters. Pyridine-borane (C 5 H 5 NBH 3, melting point 10–11 °C) is a mild reducing agent. structure of the Crabtree's catalyst. Transition metal pyridine complexes are numerous.
Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation) or Lewis acids (such as AlCl 3) used to catalyze the reaction. This makes the ...
A typical representative organic reaction displaying this mechanism is the chlorination of alcohols with thionyl chloride, or the decomposition of alkyl chloroformates, the main feature is retention of stereochemical configuration. Some examples for this reaction were reported by Edward S. Lewis and Charles E. Boozer in 1952. [2]
In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group (−NO 2) into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters ( −ONO 2 ) between alcohols and nitric acid (as occurs in the synthesis of nitroglycerin ).
Nitrosylation results in a molecule "R" adducted with the group N=O. Nitrosation and nitrosylation are two names for the process of converting organic compounds or metal complexes [1] into nitroso derivatives, i.e., compounds containing the R−NO functionality.