Search results
Results from the WOW.Com Content Network
Deductive inference is monotonic: if a conclusion is reached on the basis of a certain set of premises, then that conclusion still holds if more premises are added. By contrast, everyday reasoning is mostly non-monotonic because it involves risk: we jump to conclusions from deductively insufficient premises.
This basic diversity among the various calculi allows such difference, that the same basic thought (e.g. deduction theorem) must be proven as a metatheorem in Hilbert-style deduction system, while it can be declared explicitly as a rule of inference in natural deduction.
Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. [1] [2] This article is concerned with the inductive reasoning other than deductive reasoning (such as mathematical induction), where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the ...
Deductive reasoning is studied in logic, psychology, and the cognitive sciences. [3] [1] Some theorists emphasize in their definition the difference between these fields. On this view, psychology studies deductive reasoning as an empirical mental process, i.e. what happens when humans engage in reasoning.
The expression "statistical proof" may be used technically or colloquially in areas of pure mathematics, such as involving cryptography, chaotic series, and probabilistic number theory or analytic number theory. [23] [24] [25] It is less commonly used to refer to a mathematical proof in the branch of mathematics known as mathematical statistics.
Deductive reasoning plays a central role in formal logic and mathematics. [1] In mathematics, it is used to prove mathematical theorems based on a set of premises, usually called axioms. For example, Peano arithmetic is based on a small set of axioms from which all essential properties of natural numbers can be inferred using deductive reasoning.
Several deduction systems are commonly considered, including Hilbert-style deduction systems, systems of natural deduction, and the sequent calculus developed by Gentzen. The study of constructive mathematics , in the context of mathematical logic, includes the study of systems in non-classical logic such as intuitionistic logic, as well as the ...
Mathematical induction is an inference rule used in formal proofs, and is the foundation of most correctness proofs for computer programs. [ 3 ] Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy , in which the examination of many cases results in a probable conclusion.