Search results
Results from the WOW.Com Content Network
A change in flux of one weber per second will induce an electromotive force of one volt (produce an electric potential difference of one volt across two open-circuited terminals). Officially: Weber (unit of magnetic flux) — The weber is the magnetic flux that, linking a circuit of one turn, would produce in it an electromotive force of 1 volt ...
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the electronic switch (S1).
Antique induction coil used in schools from around 1900, Bremerhaven, Germany. An induction coil or "spark coil" (archaically known as an inductorium or Ruhmkorff coil [1] after Heinrich Rühmkorff) is a type of transformer [2] [3] [4] used to produce high-voltage pulses from a low-voltage direct current (DC) supply.
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when an electric current flows through it. [1] An inductor typically consists of an insulated wire wound into a coil.
The SI unit of work per unit charge is the joule per coulomb, where 1 volt = 1 joule (of work) per 1 coulomb of charge. [citation needed] The old SI definition for volt used power and current; starting in 1990, the quantum Hall and Josephson effect were used, [10] and in 2019 physical constants were given defined values for the definition of all SI units.
The net work on q 1 thereby generates a magnetic field whose strength (in units of magnetic flux density (1 tesla = 1 volt-second per square meter)) is proportional to the speed increase of q 1. This magnetic field can interact with a neighboring charge q 2 , passing on this momentum to it, and in return, q 1 loses momentum.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]