Search results
Results from the WOW.Com Content Network
This polarization is the displacement current as it was originally conceived by Maxwell. Maxwell made no special treatment of the vacuum, treating it as a material medium. For Maxwell, the effect of P was simply to change the relative permittivity ε r in the relation D = ε 0 ε r E. The modern justification of displacement current is ...
The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.
where current density J D is the displacement current, and J is the current density contribution actually due to movement of charges, both free and bound. Because ∇ ⋅ D = ρ, the charge continuity issue with Ampère's original formulation is no longer a problem. [22]
Since d 2 = 0, the 3-form J satisfies the conservation of current (continuity equation): = = The current 3-form can be integrated over a 3-dimensional space-time region. The physical interpretation of this integral is the charge in that region if it is spacelike, or the amount of charge that flows through a surface in a certain amount of time ...
Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.
This is simply the Lorentz force law on a per-unit-charge basis — although Maxwell's equation first appeared at equation in "On Physical Lines of Force" in 1861, [6] 34 years before Lorentz derived his force law, which is now usually presented as a supplement to the four "Maxwell's equations".
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .