Search results
Results from the WOW.Com Content Network
A life history strategy is the "age- and stage-specific patterns" [2] and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. [3] These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend ...
Thus, the equation relates the growth rate of the population N to the current population size, incorporating the effect of the two constant parameters r and K. (Note that when the population size is greater than the carrying capacity then 1 - N/K is negative, which indicates a population decline or negative growth.)
An oocyte acquires the ability to complete cortical granule exocytosis by the time the oocyte has reached late maturity. More specifically, in mice, for example, the ability to undergo cortical granule exocytosis arises some time between metaphase I and metaphase II of meiosis, which is also 5 hours before ovulation occurs.
Development before birth, or prenatal development (from Latin natalis 'relating to birth') is the process in which a zygote, and later an embryo, and then a fetus develops during gestation. Prenatal development starts with fertilization and the formation of the zygote , the first stage in embryonic development which continues in fetal ...
In biology, a biological life cycle (or just life cycle when the biological context is clear) is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offspring in the form of a new zygote which then itself goes through the same series of stages, the ...
The McKendrick–von Foerster equation is a linear first-order partial differential equation encountered in several areas of mathematical biology – for example, demography [1] and cell proliferation modeling; it is applied when age structure is an important feature in the mathematical model. [2]
In populations where extrinsic mortality is low, the drop in reproductive probability after maturity is less severe than in other cases. The mutation accumulation theory therefore predicts that such populations would evolve delayed senescence. [5] One such example of this scenario can be seen when comparing birds to organisms of equivalent size.
Eutelic organisms have a fixed number of somatic cells when they reach maturity, the exact number being relatively constant for any one species. This phenomenon is also referred to as cell constancy. Development proceeds by cell division until maturity; further growth occurs via cell enlargement only. This growth is known as auxetic growth.