Search results
Results from the WOW.Com Content Network
Cylindrical lenses. A cylindrical lens is a lens which focuses light into a line instead of a point as a spherical lens would. The curved face or faces of a cylindrical lens are sections of a cylinder, and focus the image passing through it into a line parallel to intersection of the surface of the lens and a plane tangent to it along the cylinder's axis.
A spherical lens has the same curvature in every direction perpendicular to the optical axis. Spherical lenses are adequate correction when a person has no astigmatism. To correct for astigmatism, the "cylinder" and "axis" components specify how a particular lens is different from a lens composed of purely spherical surfaces.
The first lenses were likely spherical or cylindrical glass containers filled with water, which people noticed had the ability to focus light. Simple convex lenses have surfaces that are small sections of a sphere. A ball lens is just a simple lens where the surfaces' radii of curvature are equal to the radius of the lens itself.
As the JCC is a combination of two cylindrical lenses, any cylindrical power that is added must be accompanied by a spherical lens equivalent, to keep the circle of least confusion on the retina. For example, the patient prefers the -0.50 JCC at 180°. The refraction of a -0.50JCC at 180° is: +0.50/-1.00 x 180°.
This lens consisted of two cylindrical lenses, one plano-convex and one plano-concave, which be rotated in opposite directions. In 1887 Edward Jackson described the use of modified Stokes' lens in detecting astigmatism, and in 1907 he described the determination of the axis of a correcting cylinder in astigmatism using a cross cylinder. [7]
Lapping tool on a spindle below the lens, and mounting tool on a second spindle (swung out) uses pitch to hold the lens shown with its concave side down. The non-spherical curvature of an aspheric lens can also be created by blending from a spherical into an aspherical curvature by grinding the curvatures off-axis.
A lens contained between two circular arcs of radius R, and centers at O 1 and O 2. In 2-dimensional geometry, a lens is a convex region bounded by two circular arcs joined to each other at their endpoints. In order for this shape to be convex, both arcs must bow outwards (convex-convex).
The cylindrical lens expands the laser into a plane while the spherical lens compresses the plane into a thin sheet. This is critical as the PIV technique cannot generally measure motion normal to the laser sheet and so ideally this is eliminated by maintaining an entirely 2-dimensional laser sheet. The spherical lens cannot compress the laser ...