Search results
Results from the WOW.Com Content Network
Radon-222 (222 Rn, Rn-222, historically radium emanation or radon) is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226.
The Bateman equation predicts the relative quantities of all the isotopes that compose a given decay chain once that decay chain has proceeded long enough for some of its daughter products to have reached the stable (i.e., nonradioactive) end of the chain. A decay chain that has reached this state, which may require billions of years, is said ...
Radon mostly appears with the radium/uranium series (decay chain) (222 Rn), and marginally with the thorium series (220 Rn). The element emanates naturally from the ground, and some building materials, all over the world, wherever traces of uranium or thorium are found, and particularly in regions with soils containing granite or shale , which ...
The decay-chain of uranium-238, which contains radium-226 as an intermediate decay product. 226 Ra occurs in the decay chain of uranium-238 (238 U), which is the most common naturally occurring isotope of uranium. It undergoes alpha decay to radon-222, which is also radioactive; the decay chain ultimately terminates at lead-206.
Uranium-238 (238 U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239.
For instance, when a uranium atom is bombarded with slow neutrons, fission takes place. This releases, on average, three neutrons and a large amount of energy. The released neutrons then cause fission of other uranium atoms, until all of the available uranium is exhausted. This is called a chain reaction. Artificial nuclear transmutation has ...
The largest natural contributor to public radiation dose is radon, a naturally occurring, radioactive gas found in soil and rock. [10] If the gas is inhaled, some of the radon particles may attach to the inner lining of the lung. These particles continue to decay, emitting alpha particles, which can damage cells in the lung tissue. [11]
Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.