Search results
Results from the WOW.Com Content Network
Hierarchy of mathematical spaces. Normed vector spaces are a superset of inner product spaces and a subset of metric spaces, which in turn is a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]
A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]
As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows: A De Morgan triplet is a triple (T,⊥,n) such that [1] T is a t-norm; ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above; n is a strong negator
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
The space of distributions, being defined as the continuous dual space of (), is then endowed with the (non-metrizable) strong dual topology induced by () and the canonical LF-topology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces).
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
Nuclear spaces: these are locally convex spaces with the property that every bounded map from the nuclear space to an arbitrary Banach space is a nuclear operator. Normed spaces and seminormed spaces: locally convex spaces where the topology can be described by a single norm or seminorm. In normed spaces a linear operator is continuous if and ...
The Lebesgue space. The normed vector space ((,), ‖ ‖) is called space or the Lebesgue space of -th power integrable functions and it is a Banach space for every (meaning that it is a complete metric space, a result that is sometimes called the Riesz–Fischer theorem).