enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Hierarchy of mathematical spaces. Normed vector spaces are a superset of inner product spaces and a subset of metric spaces, which in turn is a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]

  3. T-norm - Wikipedia

    en.wikipedia.org/wiki/T-norm

    As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows: A De Morgan triplet is a triple (T,⊥,n) such that [1] T is a t-norm; ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above; n is a strong negator

  4. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]

  5. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  6. Fuzzy logic - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_logic

    Fuzzy logic is an important concept in medical decision making. Since medical and healthcare data can be subjective or fuzzy, applications in this domain have a great potential to benefit a lot by using fuzzy-logic-based approaches. Fuzzy logic can be used in many different aspects within the medical decision making framework.

  7. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  8. T-norm fuzzy logics - Wikipedia

    en.wikipedia.org/wiki/T-norm_fuzzy_logics

    T-norm fuzzy logics belong in broader classes of fuzzy logics and many-valued logics. In order to generate a well-behaved implication , the t-norms are usually required to be left-continuous ; logics of left-continuous t-norms further belong in the class of substructural logics , among which they are marked with the validity of the law of ...

  9. Fuzzy mathematics - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_mathematics

    Let (G, *) be a group and A a fuzzy subset of G. Then A is a fuzzy subgroup of G if for all x, y in G, A(x*y −1) ≥ min(A(x), A(y −1)). A similar generalization principle is used, for example, for fuzzification of the transitivity property. Let R be a fuzzy relation on X, i.e. R is a fuzzy subset of X × X.