Search results
Results from the WOW.Com Content Network
Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.
The equation for exponential mass growth rate in plant growth analysis is often expressed as: = Where: M(t) is the final mass of the plant at time (t). M 0 is the initial mass of the plant. RGR is the relative growth rate. RGR can then be written as:
In young plants, growth allocation is often quite similar to the actual biomass allocation. But especially in trees, there may be a high yearly turnover in leaves and fine roots, and a low turnover in stems, branches and thick roots. In those cases, the allocation of growth and the final biomass allocation may diverge quite strongly over the years.
Growth rate. This measures the growth of individuals in size and length. This is important in fisheries where the population is often measured in terms of biomass. Mortality. This includes harvest mortality and natural mortality. Natural mortality includes non-human predation, disease and old age.
Both SLA and LMA are frequently used in plant ecology and biology. SLA is one of the components in plant growth analysis, and mathematically scales positively and linearly with the relative growth rate of a plant. LMA mathematically scales positively with the investments plants make per unit leaf area (amount of protein and cell wall; cell ...
Each life strategy varies in trade-offs of resource allocation to seed production, leaf morphology, leaf longevity, relative growth rate, and other factors, which can be summarized as allocation to (1) growth, (2) reproduction, and (3) maintenance. Competitors are primarily composed of species with high relative growth rate, short leaf-life ...
Understanding the differences between the R* theory and its major alternative the CSR triangle theory is a major goal in community ecology for many years. [6] [7] Unlike the R* theory, the CSR theory predicts that competitive ability is determined by relative growth rate and other size related traits.
Liebig's law states that growth only occurs at the rate permitted by the most limiting factor. [ 2 ] For instance, in the equation below, the growth of population O {\displaystyle O} is a function of the minimum of three Michaelis-Menten terms representing limitation by factors I {\displaystyle I} , N {\displaystyle N} and P {\displaystyle P} .