Search results
Results from the WOW.Com Content Network
Agronomic studies often focus on the above-ground part of plant biomass, and consider crop growth rates rather than individual plant growth rates. Nonetheless there is a strong corollary between the two approaches. More specifically, the ULR as discussed above shows up in crop growth analysis as well, as: = . = .
PAI may go negative if a tree loses volume due to damage or disease. Periodic annual increment is commonly used instead of current annual increment as a basis for computing growth per cent. Growth per cent indicates the rate of increase with relation to the wood capital required for its production, this is usually based on a single year's ...
The MAI changes throughout the different growth phases in a tree's life; it is highest in the middle years and then decreases with age. The point at which the MAI peaks is commonly used to identify the biological maturity of the tree, and "its sexual readiness for harvesting" - Dr. Cole Greff, 1984.
The mean annual increment (MAI) or mean annual growth refers to the average growth per year a tree or stand of trees has exhibited/experienced up to a specified age. For example, a 20-year-old tree that has a stem volume of 0.2 m 3 has an MAI of 0.01 m 3 /year.
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The rate at which a population increases in size if there are no density-dependent forces regulating the population is known as the intrinsic rate of increase.It is = where the derivative / is the rate of increase of the population, N is the population size, and r is the intrinsic rate of increase.