Search results
Results from the WOW.Com Content Network
"Auto-" meaning self or same, and "-genic" meaning producing or causing. Autogenic succession refers to ecological succession driven by biotic factors within an ecosystem and although the mechanisms of autogenic succession have long been debated, the role of living things in shaping the progression of succession was realized early on.
The epigenetics of plant growth and development refers to the heritable changes in gene expression that occur without alterations to the DNA sequence, influencing processes in plants such as seed germination, flowering, and stress responses through mechanisms like DNA methylation, histone modification, and chromatin remodeling.
Phosphorus (P) is an essential macronutrient required for plant growth and development, but it is present only in limited quantities in most of the world's soil. Plants use P mainly in the form of soluble inorganic phosphates (PO 4 −−− ) but are subject to abiotic stress when there is not enough soluble PO 4 −−− in the soil.
This image shows the development of a normal plant. It resembles the different growth processes for a leaf, a stem, etc. On top of the gradual growth of the plant, the image reveals the true meaning of phototropism and cell elongation, meaning the light energy from the sun is causing the growing plant to bend towards the light aka elongate.
It also has dramatic changes in the host recipient. Plants are exposed to many stress factors, such as drought, high salinity or pathogens, which reduce the yield of the cultivated plants or affect the quality of the harvested products. Although there are many kinds of biotic stress, the majority of plant diseases are caused by fungi. [4]
Plant hormones affect gene expression and transcription levels, cellular division, and growth. They are naturally produced within plants, though very similar chemicals are produced by fungi and bacteria that can also affect plant growth. [12] A large number of related chemical compounds are synthesized by humans.
Air is vital for respiration in soil organisms and in plant growth. [13] Both wind and atmospheric pressure play critical roles in soil aeration. [14] In addition, convection and diffusion also influence the rates of soil aeration [13] Soil structure refers to the size, shape and arrangement of solid particles in soil.
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be ...