Search results
Results from the WOW.Com Content Network
According to Knuth's definition, a B-tree of order m is a tree which satisfies the following properties: [7] Every node has at most m children. Every node, except for the root and the leaves, has at least ⌈m/2⌉ children. The root node has at least two children unless it is a leaf. All leaves appear on the same level.
Let T be a node of an ordered tree, and let B denote T's image in the corresponding binary tree. Then B's left child represents T's first child, while the B's right child represents T's next sibling. For example, the ordered tree on the left and the binary tree on the right correspond: An example of converting an n-ary tree to a binary tree
A B+ tree consists of a root, internal nodes and leaves. [1] The root may be either a leaf or a node with two or more children. A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves.
For a given node, its number of children. A leaf, by definition, has degree zero. Degree of tree The degree of a tree is the maximum degree of a node in the tree. Distance The number of edges along the shortest path between two nodes. Level The level of a node is the number of edges along the unique path between it and the root node. [4]
In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements.
An (a,b)-tree is a search tree where all of its leaves are the same depth. Each node has at least a children and at most b children, while the root has at least 2 children and at most b children. a and b can be decided with the following formula: [2] (+)
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.