enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Appearance. In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is ...

  3. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    hide. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the ...

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.

  5. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's theorem. Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm. Using Fibonacci numbers, he proved in 1844 [ 1 ][ 2 ] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5 k steps, where k is the number of digits (decimal) of ...

  6. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Bézout's identity. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the form az ...

  7. Gröbner basis - Wikipedia

    en.wikipedia.org/wiki/Gröbner_basis

    where gcd denotes the greatest common divisor of the leading monomials of f and g. As the monomials that are reducible by both f and g are exactly the multiples of lcm, one can deal with all cases of non-uniqueness of the reduction by considering only the S-polynomials. This is a fundamental fact for Gröbner basis theory and all algorithms for ...

  8. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1][2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers. Stein's algorithm uses simpler arithmetic operations than the conventional Euclidean algorithm; it replaces division with arithmetic shifts, comparisons ...

  9. Euclidean domain - Wikipedia

    en.wikipedia.org/wiki/Euclidean_domain

    Euclidean domain. In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid ...