enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Appearance. In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is ...

  3. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    hide. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the ...

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Generalizations. [edit] Although the Euclidean algorithm is used to find the greatest common divisor of two natural numbers (positive integers), it may be generalized to the real numbers, and to other mathematical objects, such as polynomials, [ 128 ] quadratic integers [ 129 ] and Hurwitz quaternions. [ 130 ]

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N. Each odd number has such a representation. Indeed, if is a factorization of N, then.

  6. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.

  7. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    a ≡ 1 (mod 4) if n is divisible by 4 but not 8; or a ≡ 1 (mod 8) if n is divisible by 8. Note: This theorem essentially requires that the factorization of n is known. Also notice that if gcd(a,n) = m, then the congruence can be reduced to a/m ≡ x 2 /m (mod n/m), but then this takes the problem away from quadratic residues (unless m is a ...

  8. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's factorization method. In number theory, Dixon's factorization method (also Dixon's random squares method[ 1] or Dixon's algorithm) is a general-purpose integer factorization algorithm; it is the prototypical factor base method. Unlike for other factor base methods, its run-time bound comes with a rigorous proof that does not rely on ...

  9. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Main article: Square-free factorization. The algorithm determines a square-free factorization for polynomials whose coefficients come from the finite field Fq of order q = pm with p a prime. This algorithm firstly determines the derivative and then computes the gcd of the polynomial and its derivative.