Search results
Results from the WOW.Com Content Network
Filamentation is the anomalous growth of certain bacteria, such as Escherichia coli, in which cells continue to elongate but do not divide (no septa formation). [1] [2] The cells that result from elongation without division have multiple chromosomal copies. [1]
Two strands of actin intertwined together form a filamentous structure allowing for the movement of motor proteins. Microfilaments can either occur in the monomeric G-actin or filamentous F-actin. [2] Microfilaments are important when it comes to the overall organization of the plasma membrane.
FtsZ, the first identified prokaryotic cytoskeletal element, forms a filamentous ring structure located in the middle of the cell called the Z-ring that constricts during cell division, similar to the actin-myosin contractile ring in eukaryotes. [2]
The function of septins in cells include serving as a localized attachment site for other proteins, and preventing the diffusion of certain molecules from one cell compartment to another. [36] In yeast cells, they build scaffolding to provide structural support during cell division and compartmentalize parts of the cell.
Cyanobacterial cell division and cell growth mutant phenotypes in Synechocystis, Synechococcus, and Anabaena.Stars indicate gene essentiality in the respective organism. While one gene can be essential in one cyanobacterial organism/morphotype, it does not necessarily mean it is essential in all other cyanobacteria.
During cell division, FtsZ is the first protein to move to the division site, and is essential for recruiting other proteins that produce a new cell wall between the dividing cells. FtsZ's role in cell division is analogous to that of actin in eukaryotic cell division, but, unlike the actin-myosin ring in eukaryotes, FtsZ has no known motor ...
The structure of proteins that form intermediate filaments (IF) was first predicted by computerized analysis of the amino acid sequence of a human epidermal keratin derived from cloned cDNAs. [8] Analysis of a second keratin sequence revealed that the two types of keratins share only about 30% amino acid sequence homology but share similar ...
The nuclear lamina is a dense (~30 to 100 nm thick) fibrillar network inside the nucleus of eukaryote cells. It is composed of intermediate filaments and membrane associated proteins. Besides providing mechanical support, the nuclear lamina regulates important cellular events such as DNA replication and cell division.