Search results
Results from the WOW.Com Content Network
In statistics, hypotheses suggested by a given dataset, when tested with the same dataset that suggested them, are likely to be accepted even when they are not true.This is because circular reasoning (double dipping) would be involved: something seems true in the limited data set; therefore we hypothesize that it is true in general; therefore we wrongly test it on the same, limited data set ...
Circular reasoning (Latin: circulus in probando, "circle in proving"; [1] also known as circular logic) is a logical fallacy in which the reasoner begins with what they are trying to end with. [2] Circular reasoning is not a formal logical fallacy, but a pragmatic defect in an argument whereby the premises are just as much in need of proof or ...
The circular argument, in which the proof of some proposition presupposes the truth of that very proposition; The regressive argument, in which each proof requires a further proof, ad infinitum; The dogmatic argument, which rests on accepted precepts which are merely asserted rather than defended
A logical fallacy where the conclusion of an argument is assumed in the premise, making the argument circular. Bew See provability predicate. BHK-interpretation The Brouwer-Heyting-Kolmogorov interpretation, a constructivist interpretation of intuitionistic logic, where the truth of a statement is equated with the existence of a proof for it. bias
Closely connected with begging the question is the fallacy of circular reasoning (circulus in probando), a fallacy in which the reasoner begins with the conclusion. [26] The individual components of a circular argument can be logically valid because if the premises are true, the conclusion must be true, and does not lack relevance. However ...
As with any logical fallacy, identifying that the reasoning behind an argument is flawed does not necessarily imply that the resulting conclusion is false. Statistical methods have been proposed that use correlation as the basis for hypothesis tests for causality, including the Granger causality test and convergent cross mapping.
Being a valid argument does not necessarily mean the conclusion will be true. It is valid because if the premises are true, then the conclusion has to be true. This can be proven for any valid argument form using a truth table which shows that there is no situation in which there are all true premises and a false conclusion. [2]
An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism: All men are mortal. (True) Socrates is a man. (True) Therefore, Socrates is mortal. (True) What makes this a valid argument is not that it has true premises and a true conclusion.