Search results
Results from the WOW.Com Content Network
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The geometrical separation between it and the reference ellipsoid is called the geoidal undulation, or more usually the geoid-ellipsoid separation, N. It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.
They are used as the geoid reference in the World Geodetic System. The NGA provides the models in two formats: as the series of numerical coefficients to the spherical harmonics which define the model, or a dataset giving the geoid height at each coordinate at a given resolution. [1]
There are two types of ellipsoid: mean and reference. A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid.It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid.
The geoid undulation (also known as geoid height or geoid anomaly), N, is the height of the geoid relative to a given ellipsoid of reference. N = h − H {\displaystyle N=h-H} The undulation is not standardized, as different countries use different mean sea levels as reference, but most commonly refers to the EGM96 geoid.
The orthometric height (symbol H) is the vertical distance along the plumb line from a point of interest to a reference surface known as the geoid, the vertical datum that approximates mean sea level. [1] [2] Orthometric height is one of the scientific formalizations of a layman's "height above sea level", along with other types of heights in ...
The separation between the geoid and the reference ellipsoid is called the undulation of the geoid, symbol . The geoid, or mathematical mean sea surface, is defined not only on the seas, but also under land; it is the equilibrium water surface that would result, would sea water be allowed to move freely (e.g., through tunnels) under the land.
For example, at a radius of 6600 km (about 200 km above Earth's surface) J 3 /(J 2 r) is about 0.002; i.e., the correction to the "J 2 force" from the "J 3 term" is in the order of 2 permille. The negative value of J 3 implies that for a point mass in Earth's equatorial plane the gravitational force is tilted slightly towards the south due to ...