Search results
Results from the WOW.Com Content Network
pKa values for acetic, chloroacetic, dichloroacetic and trichloroacetic acids. Inductive effects and mesomeric effects affect the pK a values. A simple example is provided by the effect of replacing the hydrogen atoms in acetic acid by the more electronegative chlorine atom.
A weak acid may be defined as an acid with pK a greater than about −2. An acid with pK a = −2 would be 99 % dissociated at pH 0, that is, in a 1 M HCl solution. Any acid with a pK a less than about −2 is said to be a strong acid. Strong acids are said to be fully dissociated.
For weak acid solutions, it depends on the degree of dissociation, which may be determined by an equilibrium calculation. For concentrated solutions of acids, especially strong acids for which pH < 0, the value is a better measure of acidity than the pH.
Strong acids, such as sulfuric or phosphoric acid, have large dissociation constants; weak acids, such as acetic acid, have small dissociation constants. The symbol K a , used for the acid dissociation constant, can lead to confusion with the association constant , and it may be necessary to see the reaction or the equilibrium expression to ...
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
The converse is true in a basic medium. For example, Naproxen is a non-steroidal anti-inflammatory drug that is a weak acid (its pKa value is 5.0). The gastric juice has a pH of 2.0. It is a three-fold difference (due to log scale) between its pH and its pKa; therefore there is a 1000× difference between the charged and uncharged concentrations.
It is a diprotic acid, the hydrogenphosphite ion, HP(O) 2 (OH) − is a weak acid: HP(O) 2 (OH) − → HPO 2− 3 + H + pK a = 6.7. The conjugate base HP(O) 2 (OH) − is called hydrogen phosphite, and the second conjugate base, HPO 2− 3, is the phosphite ion. [8] (Note that the IUPAC recommendations are hydrogen phosphonate and phosphonate ...
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]