enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  3. Operators in C and C++ - Wikipedia

    en.wikipedia.org/wiki/Operators_in_C_and_C++

    Similarly, with 3*x++, where though the post-fix ++ is designed to act AFTER the entire expression is evaluated, the precedence table makes it clear that ONLY x gets incremented (and NOT 3*x). In fact, the expression (tmp=x++, 3*tmp) is evaluated with tmp being a temporary value. It is functionally equivalent to something like (tmp=3*x, ++x, tmp).

  4. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...

  5. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.

  6. Unary operation - Wikipedia

    en.wikipedia.org/wiki/Unary_operation

    Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial n!), functional notation (e.g. sin x or sin(x)), and superscripts (e.g. transpose A T). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the ...

  7. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  8. Primorial - Wikipedia

    en.wikipedia.org/wiki/Primorial

    The n-compositorial is equal to the n-factorial divided by the primorial n#. The compositorials are 1, 4, 24, 192, 1728, 17 280, 207 360, 2 903 040, 43 545 600, 696 ...

  9. Smalltalk - Wikipedia

    en.wikipedia.org/wiki/Smalltalk

    3 factorial factorial log which sends "factorial" to 3, then "factorial" to the result (6), then "log" to the result (720), producing the result 2.85733. A series of expressions can be written as in the following (hypothetical) example, each separated by a period (period is a statement separator, not a statement terminator).