enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    Every Laurent polynomial can be written as a rational function while the converse is not necessarily true, i.e., the ring of Laurent polynomials is a subring of the rational functions. The rational function f ( x ) = x x {\displaystyle f(x)={\tfrac {x}{x}}} is equal to 1 for all x except 0, where there is a removable singularity .

  3. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    When the numerator of a rational function has degree exactly one greater than the denominator, the function has an oblique (slant) asymptote. The asymptote is the polynomial term after dividing the numerator and denominator. This phenomenon occurs because when dividing the fraction, there will be a linear term, and a remainder.

  4. Function field (scheme theory) - Wikipedia

    en.wikipedia.org/wiki/Function_field_(scheme_theory)

    The sheaf of rational functions K X of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of algebraic varieties , such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, K X ( U ) is the ...

  5. Function field of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Function_field_of_an...

    In algebraic geometry, the function field of an algebraic variety V consists of objects that are interpreted as rational functions on V.In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.

  6. Runge's theorem - Wikipedia

    en.wikipedia.org/wiki/Runge's_theorem

    Given a holomorphic function f on the blue compact set and a point in each of the holes, one can approximate f as well as desired by rational functions having poles only at those three points. In complex analysis , Runge's theorem (also known as Runge's approximation theorem ) is named after the German mathematician Carl Runge who first proved ...

  7. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    In other words, the function has an infinite discontinuity when its graph has a vertical asymptote. An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist, but not because it is ...

  8. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation =, y becomes arbitrarily small in magnitude as x increases.

  9. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    Analytic continuation of natural logarithm (imaginary part) Analytic continuation is a technique to extend the domain of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.