Search results
Results from the WOW.Com Content Network
For example, in a recipe that calls for 10 pounds of flour and 5 pounds of water, the corresponding baker's percentages are 100% for the flour and 50% for the water. Because these percentages are stated with respect to the weight of flour rather than with respect to the weight of all ingredients, the sum of these percentages always exceeds 100%.
For example, such a regulation might limit the concentration of NOx to 55 ppmv in a dry combustion exhaust gas corrected to 3 volume percent O 2. As another example, a regulation might limit the concentration of particulate matter to 0.1 grain per standard cubic foot (i.e., scf) of dry exhaust gas corrected to 12 volume percent CO 2.
50 / 100 × 40 / 100 = 0.50 × 0.40 = 0.20 = 20 / 100 = 20%. It is not correct to divide by 100 and use the percent sign at the same time; it would literally imply division by 10,000. For example, 25% = 25 / 100 = 0.25, not 25% / 100 , which actually is 25 ⁄ 100 / 100 = 0.0025.
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal.
Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics. Vol. 8 (2nd ed.). Springer-Verlag, Berlin. ISBN 3-540-56670-8. MR 1227985. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.
Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. In Cartesian geometry, equations are used to describe geometric figures.
A few steps of the bisection method applied over the starting range [a 1;b 1].The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs.
The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.