Search results
Results from the WOW.Com Content Network
This is also known as the nth-term test, test for divergence, or the divergence test. ... Gauss's test. Let { a n} be a sequence of positive numbers.
It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".
Carl Friedrich Gauss. Gaussian units constitute a metric system of units of measurement. This system is the most common of the several electromagnetic unit systems based on the centimetre–gram–second system of units (CGS). It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units.
In mathematics, Gauss congruence is a property held by certain sequences of integers, including the Lucas numbers and the divisor sum sequence. Sequences satisfying this property are also known as Dold sequences, Fermat sequences, Newton sequences, and realizable sequences. [ 1 ]
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
Gauss's original statement of the Theorema Egregium, translated from Latin into English. The theorem is "remarkable" because the definition of Gaussian curvature makes ample reference to the specific way the surface is embedded in 3-dimensional space, and it is quite surprising that the result does not depend on its embedding.
A key fact of Gaussian processes is that they can be completely defined by their second-order statistics. [5] Thus, if a Gaussian process is assumed to have mean zero, defining the covariance function completely defines the process' behaviour.
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex -valued (or sometimes real -valued) functions on a non-empty open subset U ⊆ R n {\displaystyle U\subseteq ...