enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon-13 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_nuclear_magnetic...

    13 C NMR spectroscopy is much less sensitive (ca. by 4 orders of magnitude) to carbon than 1 H NMR spectroscopy is to hydrogen, because of the lower abundance (1.1%) of 13 C compared to 1 H (>99%), and because of a lower(0.702 vs. 2.8) nuclear magnetic moment.

  3. δ13C - Wikipedia

    en.wikipedia.org/wiki/Δ13C

    Use of the PDB standard gives most natural material a negative δ 13 C. [9] A material with a ratio of 0.010743 for example would have a δ 13 C value of −44‰ from (). The standards are used for verifying the accuracy of mass spectroscopy ; as isotope studies became more common, the demand for the standard exhausted the supply.

  4. Carbon-13 - Wikipedia

    en.wikipedia.org/wiki/Carbon-13

    Carbon-13 has a non-zero spin quantum number of ⁠ 1 / 2 ⁠, and hence allows the structure of carbon-containing substances to be investigated using carbon-13 nuclear magnetic resonance. The carbon-13 urea breath test is a safe and highly accurate diagnostic tool to detect the presence of Helicobacter pylori infection in the stomach. [ 4 ]

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    NMR-active nuclei, particularly those with a spin quantum number of 1/2, are of great significance in NMR spectroscopy. Examples include 1 H, 13 C, 15 N, and 31 P. [10] Some atoms with very high spin (as 9/2 for 99 Tc atom) are also extensively studied with NMR spectroscopy. [11]

  6. Carbon-13 NMR satellite - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_NMR_satellite

    Carbon satellites in physics and spectroscopy, are small peaks that can be seen shouldering the main peaks in the nuclear magnetic resonance (NMR) spectrum.These peaks can occur in the NMR spectrum of any NMR active atom (e.g. 19 F or 31 P NMR) where those atoms adjoin a carbon atom (and where the spectrum is not 13 C-decoupled, which is usually the case).

  7. Deuterated DMSO - Wikipedia

    en.wikipedia.org/wiki/Deuterated_DMSO

    13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...

  8. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    In HOESY, much like NOESY is used for the cross relaxation between nuclear spins. However, HOESY can offer information about other NMR active nuclei in a spatially relevant manner. Examples include any nuclei X{Y} or X→Y such as 1 H→ 13 C, 19 F→ 13 C, 31 P→ 13 C, or 77 Se→ 13 C.

  9. Triple-resonance nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Triple-resonance_nuclear...

    Triple resonance experiments are a set of multi-dimensional nuclear magnetic resonance spectroscopy (NMR) experiments that link three types of atomic nuclei, most typically consisting of 1 H, 15 N and 13 C. These experiments are often used to assign specific resonance signals to specific atoms in an isotopically-enriched protein.