Search results
Results from the WOW.Com Content Network
However, there is a second definition of an irrational number used in constructive mathematics, that a real number is an irrational number if it is apart from every rational number, or equivalently, if the distance | | between and every rational number is positive. This definition is stronger than the traditional definition of an irrational number.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...
Simple English; SlovenĨina ... a real number is a number that can be used to measure a ... provided a definition of the equality of two irrational proportions in a ...
A number normal in base b is rich in base b, but not necessarily conversely. The real number x is rich in base b if and only if the set {x b n mod 1 : n ∈ N} is dense in the unit interval. [11] [12] We defined a number to be simply normal in base b if each individual digit appears with frequency 1 ⁄ b.
A computable number, also known as recursive number, is a real number such that there exists an algorithm which, given a positive number n as input, produces the first n digits of the computable number's decimal representation. Equivalent definitions can be given using μ-recursive functions, Turing machines or λ-calculus.
In fact, if a real number x is irrational, then the sequence (x n), whose n-th term is the truncation to n decimal places of the decimal expansion of x, gives a Cauchy sequence of rational numbers with irrational limit x. Irrational numbers certainly exist in , for example:
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...