Search results
Results from the WOW.Com Content Network
The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon , or in the special case n = 4 , a cyclic quadrilateral .
Likewise, a triangle's circumcenter—the intersection of the three sides' perpendicular bisectors, which is the center of the circle that passes through all three vertices—falls inside an acute triangle but outside an obtuse triangle. The right triangle is the in-between case: both its circumcenter and its orthocenter lie on its boundary.
Common nine-point circle, where N, O 4, A 4 are the nine-point center, circumcenter, and orthocenter respectively of the triangle formed from the other three orthocentric points A 1, A 2, A 3. The center of this common nine-point circle lies at the centroid of the four orthocentric points. The radius of the common nine-point circle is the ...
Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.
A circle circumscribing any Delaunay triangle does not contain any other input points in its interior. If a circle passing through two of the input points doesn't contain any other input points in its interior, then the segment connecting the two points is an edge of a Delaunay triangulation of the given points.
This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, all triangle centers coincide at its centroid. However the triangle centers generally take different ...
A triangle showing its circumcircle and circumcenter (black), altitudes and orthocenter (red), and nine-point circle and nine-point center (blue) In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.