Search results
Results from the WOW.Com Content Network
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
Electron micrographs of stained cell-free protein synthesis reactions revealed branched assemblies in which strings of ribosomes are linked to a central DNA fibre. [27] DNA isolated from bacterial cells co-sediment with ribosomes, further supporting the conclusion that transcription and translation occur together. [26]
An example of such an antibacterial is rifampicin, which inhibits bacterial transcription of DNA into mRNA by inhibiting DNA-dependent RNA polymerase by binding its beta-subunit, while 8-hydroxyquinoline is an antifungal transcription inhibitor. [55] The effects of histone methylation may also work to inhibit the action of transcription. Potent ...
For example, some prokaryotic bacterial mRNAs serve as templates for synthesis of proteins at the same time they are being produced via transcription. Alternatively, pre-mRNA of eukaryotic cells undergo a wide range of modifications prior to their transport from the nucleus to cytoplasm where their mature forms are translated. [9]
During transcription, RNA polymerase makes a copy of a gene from the DNA to mRNA as needed. This process differs slightly in eukaryotes and prokaryotes. One notable difference is that prokaryotic RNA polymerase associates with DNA-processing enzymes during transcription so that processing can proceed during transcription.
To clarify, this mechanism is called Rho-independent because it does not require any additional protein factor as the factor-dependent termination does, which is a simpler mechanism for the cell to regulate gene transcription. [7] Some examples of bacteria where this type of regulation predominates are Neisseria, Psychrobacter and ...
The process occurs in three main steps: initiation, elongation, and termination; and the end result is a strand of RNA that is complementary to a single strand of DNA. A number of transcription factors govern this process with homologs in both bacteria and eukaryotes, with the core machinery more similar to eukaryotic transcription. [1] [2]
In bacteria, translation initiation occurs as soon as the 5' end of an mRNA is synthesized, and translation and transcription are coupled. This is not possible in eukaryotes because transcription and translation are carried out in separate compartments of the cell (the nucleus and cytoplasm).