enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. False diffusion - Wikipedia

    en.wikipedia.org/wiki/False_diffusion

    However, for large Peclet numbers (generally > 2) this approximation gave inaccurate results. It was recognized independently by several investigators [1] [2] that the less expensive but only first order accurate upwind scheme can be employed but that this scheme produces results with false diffusion for multidimensional cases. Many new schemes ...

  3. Hybrid difference scheme - Wikipedia

    en.wikipedia.org/wiki/Hybrid_difference_scheme

    For large Peclet numbers (|Pe| > 2) it uses the Upwind difference scheme, which first order accurate but takes into account the convection of the fluid. As it can be seen in figure 4 that for Pe = 0, it is a linear distribution and for high Pe it takes the upstream value depending on the flow direction.

  4. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    Lower case denotes the face and upper case denotes node; , , and refer to the "East," "West," and "Central" cell. (again, see Fig. 1 below). Defining variable F as convection mass flux and variable D as diffusion conductance = and =

  5. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    Thus, the accuracy of a TVD discretization degrades to first order at local extrema, but tends to second order over smooth parts of the domain. The algorithm is straight forward to implement. Once a suitable scheme for F i + 1 / 2 ∗ {\displaystyle F_{i+1/2}^{*}} has been chosen, such as the Kurganov and Tadmor scheme (see below), the solution ...

  6. Symplectic integrator - Wikipedia

    en.wikipedia.org/wiki/Symplectic_integrator

    The Verlet method is the second-order integrator with = and coefficients =, =, = =. Since c 1 = 0 {\displaystyle c_{1}=0} , the algorithm above is symmetric in time. There are 3 steps to the algorithm, and step 1 and 3 are exactly the same, so the positive time version can be used for negative time.

  7. Double diffusive convection - Wikipedia

    en.wikipedia.org/wiki/Double_diffusive_convection

    Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion. [ 2 ] Convection in fluids is driven by density variations within them under the influence of gravity.

  8. Combined forced and natural convection - Wikipedia

    en.wikipedia.org/wiki/Combined_forced_and...

    The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate.

  9. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...