Search results
Results from the WOW.Com Content Network
Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1] It is named after Étienne Bézout.
For stating the generalization of Bézout's theorem, it is convenient to introduce new indeterminates , …,, and to represent the multi-degree , …, by the linear form = + +. In the following, "multi-degree" will refer to this linear form rather than to the sequence of degrees.
Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem, result from Bézout's identity. A Bézout domain is an integral domain in which Bézout's identity holds. In particular, Bézout's identity holds in principal ideal domains. Every theorem that results from Bézout's identity is thus true in ...
A generalization of Bézout's theorem asserts that, if an intersection of n projective hypersurfaces has codimension n, then the degree of the intersection is the product of the degrees of the hypersurfaces. The degree of a projective variety is the evaluation at 1 of the numerator of the Hilbert series of its coordinate ring.
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product of and a polynomial in of degree one less than the degree of .
Bézout's identity is a GCD related theorem, initially proved for the integers, which is valid for every principal ideal domain. In the case of the univariate polynomials over a field, it may be stated as follows.
Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. ... Belyi's theorem; Bézout's theorem;
Bézout's identity, Bézout's lemma; Extended Euclidean algorithm; Table of divisors; Prime number, prime power. Bonse's inequality; Prime factor. Table of prime factors; Formula for primes; Factorization. RSA number; Fundamental theorem of arithmetic; Square-free. Square-free integer; Square-free polynomial; Square number; Power of two ...