Search results
Results from the WOW.Com Content Network
In computing, compiler correctness is the branch of computer science that deals with trying to show that a compiler behaves according to its language specification. [citation needed] Techniques include developing the compiler using formal methods and using rigorous testing (often called compiler validation) on an existing compiler.
C++ enforces stricter typing rules (no implicit violations of the static type system [1]), and initialization requirements (compile-time enforcement that in-scope variables do not have initialization subverted) [7] than C, and so some valid C code is invalid in C++. A rationale for these is provided in Annex C.1 of the ISO C++ standard. [8]
The first two of these, const and volatile, are also present in C++, and are the only type qualifiers in C++. Thus in C++ the term "cv-qualified type" (for const and volatile) is often used for "qualified type", while the terms "c-qualified type" and "v-qualified type" are used when only one of the qualifiers is relevant.
Bounds-checking elimination could eliminate the second check if the compiler or runtime can determine that neither the array size nor the index could change between the two array operations. Another example occurs when a programmer loops over the elements of the array, and the loop condition guarantees that the index is within the bounds of the ...
The ANSI/ISO C Specification Language (ACSL) is a specification language for C programs, using Hoare style pre- and postconditions and invariants, that follows the design by contract paradigm. Specifications are written as C annotation comments to the C program, which hence can be compiled with any C compiler.
Thus, calling f x, where f:: a-> b-> c, yields a new function f2:: b-> c that can be called f2 b to produce c. The actual type specifications can consist of an actual type, such as Integer, or a general type variable that is used in parametric polymorphic functions, such as a, or b, or anyType. So we can write something like: functionName:: a ...
Binary-code compatibility (binary compatible or object-code compatible) is a property of a computer system, meaning that it can run the same executable code, typically machine code for a general-purpose computer central processing unit (CPU), that another computer system can run.
32-bit compilers emit, respectively: _f _g@4 @h@4 In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall).