enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    For positive semidefinite A, an decomposition exists where the number of non-zero elements on the diagonal D is exactly the rank of A. [11] Some indefinite matrices for which no Cholesky decomposition exists have an LDL decomposition with negative entries in D : it suffices that the first n − 1 leading principal minors of A are non-singular.

  3. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    Thus must also be positive semidefinite. This proves the necessity of the PPT criterion. Showing that being PPT is also sufficient for the 2 X 2 and 3 X 2 (equivalently 2 X 3) cases is more involved. It was shown by the Horodeckis that for every entangled state there exists an entanglement witness.

  4. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.

  5. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  6. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  7. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Since is positive semidefinite, all elements in are non-negative. Since the product of two unitary matrices is unitary, taking = one can write = = which is the singular value decomposition. Hence, the existence of the polar decomposition is equivalent to the existence of the singular value decomposition.

  8. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download QR code; Print/export ... In mathematics, positive semidefinite may refer to: Positive semidefinite function ... Cookie statement; Mobile view;

  9. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.