Search results
Results from the WOW.Com Content Network
For positive semidefinite A, an decomposition exists where the number of non-zero elements on the diagonal D is exactly the rank of A. [11] Some indefinite matrices for which no Cholesky decomposition exists have an LDL decomposition with negative entries in D : it suffices that the first n − 1 leading principal minors of A are non-singular.
Thus must also be positive semidefinite. This proves the necessity of the PPT criterion. Showing that being PPT is also sufficient for the 2 X 2 and 3 X 2 (equivalently 2 X 3) cases is more involved. It was shown by the Horodeckis that for every entangled state there exists an entanglement witness.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every (), , and , , where is the domain of .
Since is positive semidefinite, all elements in are non-negative. Since the product of two unitary matrices is unitary, taking = one can write = = which is the singular value decomposition. Hence, the existence of the polar decomposition is equivalent to the existence of the singular value decomposition.
Download QR code; Print/export ... In mathematics, positive semidefinite may refer to: Positive semidefinite function ... Cookie statement; Mobile view;
There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.