Search results
Results from the WOW.Com Content Network
K3PO4. Tripotassium phosphate has few industrial applications, however it is commonly used as a base in laboratory-scale organic chemistry. Being insoluble in organic solvents, it is an easily removed proton acceptor in organic synthesis. The anhydrous salt is especially basic. [5] Some of the reactions are listed below:
The dissociation of salts by solvation in a solution, such as water, means the separation of the anions and cations. The salt can be recovered by evaporation of the solvent. An electrolyte refers to a substance that contains free ions and can be used as an electrically conductive medium.
The sulfur–iodine cycle (S–I cycle) is a series of thermochemical processes used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled. If work is partially used as an input, the resulting thermochemical cycle is defined as a hybrid one.
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.