Search results
Results from the WOW.Com Content Network
In Scala, any entity (narrowly, a binding) can be defined as mutable or immutable: in the declaration, one can use val (value) for immutable entities and var (variable) for mutable ones. Note that even though an immutable binding can not be reassigned, it may still refer to a mutable object and it is still possible to call mutating methods on ...
One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state. Mutability allows better object reuse via the caching and re-initialization of old, unused ...
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
The immutable keyword denotes data that cannot be modified through any reference. The const keyword denotes a non-mutable view of mutable data. Unlike C++ const, D const and immutable are "deep" or transitive, and anything reachable through a const or immutable object is const or immutable respectively. Example of const vs. immutable in D
In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure.
In computer science, having value semantics (also value-type semantics or copy-by-value semantics) means for an object that only its value counts, not its identity. [1] [2] Immutable objects have value semantics trivially, [3] and in the presence of mutation, an object with value semantics can only be uniquely-referenced at any point in a program.
Because fields in C# classes are always mutable, variantly parameterized classes in C# would not be very useful. But languages which emphasize immutable data can make good use of covariant data types. For example, in all of Scala, Kotlin and OCaml the immutable list type is covariant: List [Cat] is a subtype of List [Animal].
Functional languages also simulate states by passing around immutable states. This can be done by making a function accept the state as one of its parameters, and return a new state together with the result, leaving the old state unchanged. [82] Impure functional languages usually include a more direct method of managing mutable state.