Search results
Results from the WOW.Com Content Network
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
General case: [2] In category theory the direct sum is often, but not always, the coproduct in the category of the mathematical objects in question. For example, in the category of abelian groups, direct sum is a coproduct. This is also true in the category of modules.
The fundamental theorem of finite abelian groups states that every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order; it is also known as the basis theorem for finite abelian groups. Moreover, automorphism groups of cyclic groups are examples of abelian groups. [13]
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
The structure of any finite abelian group is relatively simple; every finite abelian group is the direct sum of cyclic p-groups. This can be extended to a complete classification of all finitely generated abelian groups, that is all abelian groups that are generated by a finite set. The situation is much more complicated for the non-abelian groups.
The concept of disjoint union secretly underlies the above examples: the direct sum of abelian groups is the group generated by the "almost" disjoint union (disjoint union of all nonzero elements, together with a common zero), similarly for vector spaces: the space spanned by the "almost" disjoint union; the free product for groups is generated ...
In abstract algebra, a basic subgroup is a subgroup of an abelian group which is a direct sum of cyclic subgroups and satisfies further technical conditions. This notion was introduced by L. Ya. Kulikov (for p-groups) and by László Fuchs (in general) in an attempt to formulate classification theory of infinite abelian groups that goes beyond the Prüfer theorems.
The two Prüfer theorems follow from a general criterion of decomposability of an abelian group into a direct sum of cyclic subgroups due to L. Ya. Kulikov: An abelian p -group A is isomorphic to a direct sum of cyclic groups if and only if it is a union of a sequence { A i } of subgroups with the property that the heights of all elements of A ...