Search results
Results from the WOW.Com Content Network
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, [1] it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initially characterized in E. coli and is ubiquitous in prokaryotes.
After replication of the desired region, the RNA primer is removed by DNA polymerase I via the process of nick translation. The removal of the RNA primer allows DNA ligase to ligate the DNA-DNA nick between the new fragment and the previous strand. DNA polymerase I & III, along with many other enzymes are all required for the high fidelity ...
Shared primase-binding peptide in archaeal PolD and eukaryotic Polα [1] DNA polymerase alpha also known as Pol α is an enzyme complex found in eukaryotes that is involved in initiation of DNA replication. The DNA polymerase alpha complex consists of 4 subunits: POLA1, POLA2, PRIM1, and PRIM2. [2]
There are two main types of primase: DnaG found in most bacteria, and the AEP (Archaeo-Eukaryote Primase) superfamily found in archaean and eukaryotic primases. While bacterial primases (DnaG-type) are composed of a single protein unit (a monomer) and synthesize RNA primers, AEP primases are usually composed of two different primase units (a heterodimer) and synthesize two-part primers with ...
In prokaryotes, DNA polymerase I synthesizes the Okazaki fragment until it reaches the previous RNA primer. Then the enzyme simultaneously acts as a 5′→3′ exonuclease, removing primer ribonucleotides in front and adding deoxyribonucleotides behind.
The E. Coli DnaG primase is a 581 residue monomeric protein with three functional domains, according to proteolysis studies. There is an N-terminal Zinc-binding domain (residues 1–110) where a zinc ion is tetrahedrally coordinated between one histidine and three cysteine residues, which plays a role in recognizing sequence specific DNA binding sites.
In prokaryotes, like E. coli, DNA Pol III is the major polymerase involved with DNA replication. While DNA Pol II is not a major factor in chromosome replication, it has other roles to fill. DNA Pol II does participate in DNA replication. While it might not be as fast as DNA Pol III, it has some abilities that make it an effective enzyme.
Type I topoisomerases are ATP-independent enzymes (except for reverse gyrase), and can be subdivided according to their structure and reaction mechanisms: type IA (bacterial and archaeal topoisomerase I, topoisomerase III and reverse gyrase) and type IB (eukaryotic topoisomerase I and topoisomerase V).