Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as
It yields an analytic analysis of the Joule–Thomson coefficient and associated inversion curve, which were instrumental in the development of the commercial liquefaction of gases. It shows that the specific heat at constant volume c v {\displaystyle c_{v}} is a function of T {\displaystyle T} only.
For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect. For reference, the Joule–Thomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]
This Thomson effect was predicted and later observed in 1851 by Lord Kelvin (William Thomson). [9] It describes the heating or cooling of a current-carrying conductor with a temperature gradient. If a current density J {\displaystyle \mathbf {J} } is passed through a homogeneous conductor, the Thomson effect predicts a heat production rate per ...
At temperatures below their inversion temperature gases will cool during Joule expansion, while at higher temperatures they will heat up. [ 5 ] [ 6 ] The inversion temperature of a gas is typically much higher than room temperature; exceptions are helium, with an inversion temperature of about 40 K, and hydrogen, with an inversion temperature ...
It’s hard to think of a more shocking trade in NBA history when you consider the names and the timing of the deal, late on a Saturday night when the Lakers looked as good as they have at this ...
Joule's apparatus for measuring the mechanical equivalent of heat. Most established scientists, such as William Henry, [13] as well as Thomas Thomson, believed that there was enough uncertainty in the caloric theory to allow its adaptation to account for the new results. It had certainly proved robust and adaptable up to that time.