enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric algebra - Wikipedia

    en.wikipedia.org/wiki/Symmetric_algebra

    The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring .

  3. Macaulay2 - Wikipedia

    en.wikipedia.org/wiki/Macaulay2

    Macaulay2 is built around fast implementations of algorithms useful for computation in commutative algebra and algebraic geometry. This core functionality includes arithmetic on rings, modules, and matrices, as well as algorithms for Gröbner bases, free resolutions, Hilbert series, determinants and Pfaffians, factoring, and similar.

  4. Conjugate residual method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_residual_method

    The conjugate residual method is an iterative numeric method used for solving systems of linear equations. It's a Krylov subspace method very similar to the much more popular conjugate gradient method, with similar construction and convergence properties. This method is used to solve linear equations of the form

  5. LAPACK - Wikipedia

    en.wikipedia.org/wiki/LAPACK

    aaa is a one- to three-letter code describing the actual algorithm implemented in the subroutine, e.g. SV denotes a subroutine to solve linear system, while R denotes a rank-1 update. For example, the subroutine to solve a linear system with a general (non-structured) matrix using real double-precision arithmetic is called DGESV . [ 2 ] : "

  6. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    Originally described in Xu's Ph.D. thesis [9] and later published in Bramble-Pasciak-Xu, [10] the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of models in science and engineering ...

  7. Generalized minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Generalized_minimal...

    The Arnoldi process also constructs ~, an (+)-by-upper Hessenberg matrix which satisfies = + ~ an equality which is used to simplify the calculation of (see § Solving the least squares problem). Note that, for symmetric matrices, a symmetric tri-diagonal matrix is actually achieved, resulting in the MINRES method.

  8. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades. Besides having polynomial time complexity, interior-point methods are also effective in practice.

  9. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    Free Boost C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît Jacob C++ 2008 3.4.0 / 08.2021 Free MPL2: Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. Fastor [5]