enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  3. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  4. File:Example of Positive Semidefinite Matrices.webm

    en.wikipedia.org/wiki/File:Example_of_Positive...

    What links here; Upload file; Special pages; Printable version; Page information

  5. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm, transposing the matrix in memory (to make the columns contiguous) may improve performance by ...

  6. Density matrix - Wikipedia

    en.wikipedia.org/wiki/Density_matrix

    The off-diagonal elements are complex conjugates of each other (also called coherences); they are restricted in magnitude by the requirement that () be a positive semi-definite operator, see below. A density operator is a positive semi-definite, self-adjoint operator of trace one acting on the Hilbert space of the system.

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  8. Copositive matrix - Wikipedia

    en.wikipedia.org/wiki/Copositive_matrix

    The class of copositive matrices can be characterized using principal submatrices. One such characterization is due to Wilfred Kaplan: [6]. A real symmetric matrix A is copositive if and only if every principal submatrix B of A has no eigenvector v > 0 with associated eigenvalue λ < 0.

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation: