Search results
Results from the WOW.Com Content Network
For example, if n were less than one, the power law predicts that the effective viscosity would decrease with increasing shear rate indefinitely, requiring a fluid with infinite viscosity at rest and zero viscosity as the shear rate approaches infinity, but a real fluid has both a minimum and a maximum effective viscosity that depend on the ...
The predictions of the first three models (hard-sphere, power-law, and Sutherland) can be simply expressed in terms of elementary functions. The Lennard–Jones model predicts a more complicated T {\displaystyle T} -dependence, but is more accurate than the other three models and is widely used in engineering practice.
The simplest model of the dense fluid viscosity is a (truncated) power series of reduced mole density or pressure. Jossi et al. (1962) [14] presented such a model based on reduced mole density, but its most widespread form is the version proposed by Lohrenz et al. (1964) [15] which is displayed below.
In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo- plastic behaviour, [ 1 ] [ 2 ] and is usually defined as excluding time-dependent effects, such as thixotropy .
Under certain circumstances, flows of granular materials can be modelled as a continuum, for example using the μ rheology. Such continuum models tend to be non-Newtonian, since the apparent viscosity of granular flows increases with pressure and decreases with shear rate. The main difference is the shearing stress and rate of shear.
In fluid dynamics, a Cross fluid is a type of generalized Newtonian fluid whose viscosity depends upon shear rate according to the Cross Power Law equation: (˙) = + + (˙)where (˙) is viscosity as a function of shear rate, is the infinite-shear-rate viscosity, is the zero-shear-rate viscosity, is the time constant, and is the shear-thinning index.
Ordinary paint is one example of a shear-thinning fluid, while oobleck provides one realization of a shear-thickening fluid. Finally, the yield stress quantifies the amount of stress that the fluid may experience before it yields and begins to flow. This non-Newtonian fluid model was introduced by Winslow Herschel and Ronald Bulkley in 1926. [1 ...
The power law model is used to display the behavior of Newtonian and non-Newtonian fluids and measures shear stress as a function of strain rate. The relationship between shear stress, strain rate and the velocity gradient for the power law model are: τ x y = − m | γ ˙ | n − 1 d v x d y , {\displaystyle \tau _{xy}=-m\left|{\dot {\gamma ...