Search results
Results from the WOW.Com Content Network
Ricci calculus, and index notation more generally, distinguishes between lower indices (subscripts) and upper indices (superscripts); the latter are not exponents, even though they may look as such to the reader only familiar with other parts of mathematics.
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ranking of the operations.
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...
In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.